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Abstract Based on the concept of molecular nonadiabatic processes, namely, curve
crossing and electronic interstate coupling, here we have introduced a model of an
artificial molecule composed of three coupled quantum dots in terms of displaced
harmonic oscillators of the confinement potential. We have shown that the static and
dynamic features of vibronic entanglement can be realized in terms of the tunneling
current in our model. An entanglement sudden-death can be shown to be equivalent
to the suppression of tunneling current at the appropriate parameters of the magnetic
field. We have also provided the nonclassicality of the vibration of the dot confinement
potential which maximizes at the anticrossing zone.

Keywords Tunneling current · Vibronic entanglement · Artificial molecule

1 Introduction

Energy level mixing and superposition of quantum states in atomic and molecular sys-
tems [1,2] are well-studied phenomena in physics. The modern research now focuses
on the production of ‘artificial atom’ structures, called quantum dots [3,4], which act
as tiny laboratories where the ideas and theories of many-body physics developed
to understand atoms and nuclei can be applied and more importantly, can be con-
trolled externally unlike real atoms or molecules [5–9]. Quantum dots are artificially
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designed low-dimensional nanometer-sized systems confined in all the three spatial
dimensions with atom-like properties that can be filled with electrons (or holes) [10].
Coupled quantum dots thus act like molecular analogues in solid-state. Quantum
dot molecules [6,7,9] find novel applications in modern optoelectronic devices and
quantum information processing with some surprising properties, e.g., antibonding
ground states [9,11,12] that can not be explained by simply visualizing these sys-
tems as rescaled versions of real atomic-molecular systems. These interesting features
come into life mainly due to the ability to externally control the coherent tunnel cou-
pling [13,14] between two dots by varying the separation of the dots or by applying
electric or magnetic field [7,9] and a desired molecular wavefunction can be prepared.
The realization of phenomena familiar in quantum and atom optics [15–18] like dark
state formation [19], current rectification [20] and trapping of population of electronic
state [21] are discussed in various occasions for level-mixing in a single quantum dot
(intradot mixing) or in spatially separated quantum dots (interdot mixing).

In a quantum dot, the nuclear potential of a real atom is replaced by an artificially
generated confinement potential generally modelled as a two-dimensional anisotropic
harmonic-oscillator [10,22,23]. Theoretical Fock–Darwin spectrum [24,25] of the
quantum dot with an effective circular or elliptical and parabolic lateral confinement
potential [10] shows exact level crossings [26] of the single-particle states evolving
with the magnetic field. Level-mixing in molecules can be performed through coupling
between different electronic states arising out of nonadiabatic processes. To analyze the
analogous aspect of electronic interstate coupling or non-Born–Oppenheimer coupling
of real molecules in an artificial molecule composed of coupled quantum dots, here
we have theoretically studied the superposition of single particle states of different
dots in an interdot mixing scheme.

Single as well as coupled quantum dots are ideal systems to study the generation,
control and the effects of quantum entanglement of excitons and electron pairs [5,6,27–
32] on the experimentally realizable properties [33,34] which are essential ingredi-
ents of quantum information processing [35,36]. In the spirit of the above studies, in
this paper we have considered an interdot coupling scheme of three single particle
levels in three separate quantum dots with a suitable model Hamiltonian. This type
of coupled three-dot structure have been studied in various situations with varying
complexity [19,21,26,37,38]. The three coupled dots, which act collectively as the
collector (or downstream) dot system is probed by an emitter (or upstream) dot. In the
present setup of interdot level mixing, we have studied the entanglement between the
electronic and the center-of-mass motional degrees of freedom where the motion is
under the two-dimensional anisotropic harmonic-oscillator potential representing the
dot confinement. In what follows we will simply call this center-of-mass motion due
to confinement potential as vibration. The entanglement of the vibronic quantum state
of the coupled quantum dots is measured in terms of the von Neumann entropy of
entanglement [39,40]. We have also characterized the nonclassicality of the vibration
corresponding to the dot confinement potential using the Wigner function matrix [41].
As the experimental realization of quantum entanglement is very challenging, here we
have explored the connection between the variation of entanglement and the exper-
imentally measurable tunneling current both in the steady state situation and also
through their dynamical evolution at various magnetic field strengths.
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In what follows we have described the model Hamiltonian for the interdot mixing
in Sect. 2. The measures of entanglement and nonclassicality are given in Sect. 3. The
numerical results are discussed in Sect. 4. The paper is concluded in Sect. 5.

2 Model for interdot mixing

The stationary states of an electron in a two-dimensional lateral anisotropic parabolic
confinement potential, Vc(x,y) in presence of a magnetic field along the z-direction
are eigenstates of the Hamiltonian [24,25]

H = 1

2m∗
[
p − e

c
A

]2 + Vc(x,y), (1)

where A is the symmetric gauge vector potential taken as A = 1
2 B(−y, x, 0) where

B is the magnetic field and Vc(x,y) = 1
2 m∗(ω2

xx2 + ω2
yy2) with m∗ being effective

electron mass. In this scenario the motion in the x-y plane is quantized with the energy
eigenvalues given as

Enx,ny = (nx + 1/2)h̄ω1 + (ny + 1/2)h̄ω2 (2)

where ω1, ω2 are functions of ωx, ωy and ωc where ωc = eB/m∗c is the cyclotron
frequency. nx, ny are the quantum numbers of the two-dimensional harmonic oscillator
potential that acts as the mean-field confinement potential [10]. In absence of the
magnetic field, ωc = 0 and then the energy levels are simply of a two-dimensional
harmonic oscillator. On the other hand, for a high field strength with ωc � ωx, ωy the
energy levels are given by Enx = (nx + 1/2)h̄ωc, i.e., the Landau levels [10]. For the
isotropic case with ωx = ωy = ω, we have

ω1 =
(
ω2 + ω2

c

4

)1/2

+ ωc

2
(3)

and

ω2 =
(
ω2 + ω2

c

4

)1/2

− ωc

2
. (4)

Here we consider three single particle levels undergoing mixing which are in three
separate coupled quantum dots. The energy levels of the dots can be tuned and the
tunneling barrier between two dots can be controlled by proper application of gate
voltages [38] that, for example, can convert a cyclic triple quantum dot molecule to
a linear one and vice versa. The three dots-1,2,3 are represented by the state vectors
|1〉, |2〉 and |3〉 where |1〉 denotes the single electron to be on dot-1 etc. (see Fig. 1). The
level mixing in the coupled dots is probed with another dot (emitter dot) in its ground
state by bringing their energy levels selectively into resonance with adjusting the gate
potential. Now if the two-dimensional confinement potential of the coupled dots is
identical to that of the probe or emitter dot, then non-zero overlap is possible only
between single particle states of emitter and collector dots with same set of quantum
numbers nx, ny. But tunneling current measurements indicate finite overlap between
the emitter dot ground state and high energy states of collector dot. It indicates that
the confinement potentials are not identical for emitter and collector dots and energy
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Fig. 1 Schematic diagram showing the interdot coupling situation. Here the collector dot system consists
of three dots coupled in a linear arrangement which is probed with an emitter dot. The coupling between the
dots is shown with a double-headed arrow. Each dot is represented with its two-dimensional confinement
potential shown in the cartoon in the x-y plane. The positions of the potential minima of the coupled dots in
x-y plane are displaced compared to that of the emitter dot whose potential minimum is taken as the origin.
B is the external magnetic field applied in z-direction. The energy levels of the dots and coupling among
them can be controlled by properly placed gates (see Ref. [38]) two of which are shown in the picture for
example. The triple barrier structure can be of made of materials like GaAs. Current flows through the
system on application of a bias voltage between source and drain and gate voltages. The tunnel coupling
between the emitter dot and the collector dot system is taken to be negligibly small

level mixing occurs due to coupling. Recent experimental result on three level mixing
in a quantum dot [26] explains this in terms of the nonideal nature of the harmonic
potential which is akin to anharmonic mode-mode couplings in molecules. Now this
coupling can also be generated by electronic means via tunnel coupling between two
dots forming a dot molecule. Here we model the coupling among three dots, that act
collectively as the collector dot system, in the latter mechanism which we call interdot
mixing. Although the effect of mixing of three single particle levels is qualitatively
similar whether the mixing is intradot or interdot, we mention that the mechanism of
energy sharing is significantly different in two cases.

We describe the emitter dot and the coupled collector dot system using a common
set of vibrational coordinates with the confinement potential of each collector dot
being represented as a displaced harmonic oscillator with respect to the emitter dot
whose potential minimum is taken as the origin. Now the tunnel coupling among the
dots is sufficient to give the level mixing. But we treat the collector dots with dis-
placed oscillator potentials compared to the emitter dot for two reasons as follows.
(1) Generally two dots in a nanodevice are of different size, composition and expe-
rience diverse strain fields [7,9] and hence should be modelled differently. (2) The
displaced oscillator Hamiltonian when polaron transformed gives a tunnel coupling
which is a function of the magnetic field and hence can reproduce the externally con-
trolled interaction between two dots achieved experimentally. The Hamiltonian for
the composite collector dot system is written in second quantization as (h̄ = 1)
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H =
3∑

n=1

|n〉
(

2∑
k=1

(
ωk(a

†
kak + 1/2)+ gnk(a

†
k + ak)+ g2

nk

ωk

))
〈n|

+
3∑

n, m=1
n �= m

|n〉Vnm〈m|. (5)

Here a†
k, ak are the creation and annihilation operators of the harmonic confinement

potential, gnk is the vibronic coupling constant, Vnm is the interdot tunnel coupling
matrix element and ωk is the vibrational frequency given in Eqs. (3) and (4).

Applying a polaron transformation [42–45] on the Hamiltonian in Eq. (5) we get

H̃ =
3∑

n=1

|n〉
(

2∑
k=1

(
ωk(a

†
kak + 1/2)

))
〈n| +

3∑

n, m=1
n �= m

|n〉Vnm

2∏
k=1

Dk(αnmk)〈m|. (6)

Here Dk(αnmk) is the Glauber displacement operator defined as Dk(αnmk) =
exp

(
αnmk(a

†
k − ak)

)
where αnmk = gnk−gmk

ωk
. Hence the off-diagonal elements of

the Hamiltonian giving rise to the level mixing are magnetic field dependent. We
solve the Hamiltonian in Eq. (6) to get the energy � j and the eigenvectors of the
collector dot system from H̃|ψ j 〉 = � j |ψ j 〉 where the jth eigenstate of the composite
collector dot system can be expressed as

|ψ j〉 =
3∑

l=1

∞∑
nx,ny=0

Cj
l|l, nx, ny〉. (7)

The expansion coefficients depend on the vibrational coordinates corresponding to the
confinement potential.

3 Measures of entanglement and nonclassicality

3.1 von Neumann entropy

The entanglement between the electronic and vibrational degrees of freedom of the
composite states of the collector dot can be expressed using the von Neumann entropy
of entanglement [39,40,46,47] as

E = −Trel
(
ρel log3 ρel

) = −
∑

k

γk log3 γk. (8)

Here ρel is the reduced density operator for the electronic degree of freedom (with
three-dimensional state space) obtained by taking partial trace over the vibrational
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degree of freedom of the total density operator � i.e., ρel = Trvib[�]. γk are the
eigenvalues of ρel. The total density operator � for the jth eigenstate of the system is
constructed from Eq. (7).

Now the von Neumann entropy [40] for the system is defined as S =
−Trel (ρel log ρel). For unentangled states the entropy is zero and so is E. On the
other hand, the maximally entangled state with state space of dimensionality D has
the maximum entropy log D [40]. So for the electronic degree of freedom with three
electronic states, the maximum entropy will be log 3 and the maximum entanglement
will be E = 1.

3.2 Wigner function matrix

Wigner function is a phase space quasiprobability distribution [48,49] that gives the
complete information about the motional state of the system equivalent to the infor-
mation contained in the corresponding density operator. Wigner function matrix [41]
is the extended form of Wigner function to describe the composite system includ-
ing the electronic degrees of freedom. It is useful for the complete description of the
entangled electronic and vibrational motion [41,50] of the molecular system studied.
By appropriate measuring techniques [51–55] the Wigner function can be an index of
quantum interference and one can realize the quantum state of a given system.

The Wigner function matrix for the superposed states of the coupled collector dot
system can be written as [50]

Wij(β1, β2) = Tr
[
�Ajiδ(β1 − a1)δ(β2 − a2)

]
. (9)

Here � is the total density operator describing the electronic and vibrational degrees
of freedom. Aji is the electronic flip operator given by Aji = |j〉〈i| that gives rise to
transition from state |i〉 to state |j〉. βi (i = 1, 2) represents the complex phase space
amplitude of the vibrational motion defined as βi = (Qi + iPi) with Qi being the
dimensionless normal vibrational coordinate of the ith mode and Pi its conjugate
momentum. δ(βi −ai) is the operator-valued delta function [49] defined as the Fourier
transform of the displacement operator D(ξ) = exp(ξa† − ξ∗a) as,

δ(βi − ai) = 1

π2

∫
d2ξD(ξ)exp

(
βiξ

∗ − β∗
i ξ

)

= 2

π
D(βi )(−1)a

†
i ai D†(βi ). (10)

The Wigner function corresponding to the vibrational degree of freedom can be
obtained from the Wigner function matrix by simply taking the trace over the electronic
degree of freedom [41] and is given as

W(β1, β2) =
∑

i

Wii(β1, β2). (11)
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The negativity of the Wigner function reveals the nonclassicality of the vibrational
motion and can also give an idea about the entanglement in the system [47]. A non-
classical state gives rise to entangled output states when mixed with the vacuum [56]
which is not the case with a ‘classical’ state. We define the nonclassicality of a partic-
ular eigenstate of the system by a parameter δ defined as the volume of the negative
portion of the Wigner function [57] in the phase space of the vibrational motion in the
confinement potential. It is given by

δ =
∫

Q1,Q2

∫

P1,P2

(|W| − W) dQdP, (12)

with W = W(Q1,Q2,P1,P2) and dQ = dQ1dQ2, dP = dP1dP2.

4 Results and discussion

To show the applicability of the model Hamiltonian for interdot level mixing, we
take the three states in three separate dots undergoing superposition. The states are
denoted with their vibrational quantum numbers (nx, ny) as (0,5), (1,3) and (2,1). The
jth eigenstate of the collector dot system then reduces to

|ψ j〉 = Cj
1|1, 0, 5〉 + Cj

2|2, 1, 3〉 + Cj
3|3, 2, 1〉, j = 1, 2, 3. (13)

Here the basis state |1, 0, 5〉 ≡ |1〉 ⊗ |0, 5〉 indicates the |0, 5〉 state in dot-‘1’ and
similarly the other basis states are defined.The superposed states |ψ j 〉 are called lower
branch state, middle branch state and upper branch state for j = 1, 2, 3, respectively.
For the linear arrangement of the three collector dots we take V13 = V31 = 0. With
this set up we have determined the tunneling current which is proportional to the
overlap between the emitter or probe dot ground state and the molecular states of the
coupled collector dot system given in Eq. (13). We have studied the variation of the
tunneling current as a function of the external magnetic field and analyzed the relation
between the tunneling current and the vibronic entanglement in the interdot mixing
case in two different subsections giving results for steady state situation and dynamic
evolutions of both the quantities.

4.1 Steady state

In this study the values of the parameters of the Hamiltonian in Eq. (6) are taken
in such a way that produces the avoided crossing behavior in the energy evolution
of the mixed states of the three collector dots as a function of the magnetic field as
well as gives the field dependent tunneling current variation with suppression of the
center branch current at a particular field strength. To numerically solve the interdot
Hamiltonian (Eq. 6) for the energies and eigenvectors we take ω = 5.3 meV and all
the relevant parameters are scaled with respect to ω. We take the tunnel couplings
V12 between collector dot-1 and dot-2 and V23 between dot-2 and dot-3 equal to
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Fig. 2 Energy values of the
coherent composite eigenstates
of the coupled collector dot
system are plotted as a function
of the magnetic field. The
straight lines denote the energy
variation of the uncoupled basis
states
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0.5 (scaled with respect to ω). The values of gnk (see Eq. 5) are taken like this:
g11 = 2.1, g12 = 2.6, g21 = g22 = 1.5, g31 = 0.9 and g32 = 0. This gives α121 =
α231 = 0.6, α122 = 1.1 and α232 = 1.5. Here the coupling between the (0,5) (in
dot-1) and (1,3) (in dot-2) basis states increases from 0.03 (scaled with respect to ω)
at ωc/ω = 0.4 to 0.06 at ωc/ω = 0.8 and then decreases to 0.05 at ωc/ω = 1.0.
The coupling between the (1,3) and (2,1) (in dot-3) basis states increases from 0.025
to 0.08 in the same total range. We must point out that this choice of parameters is
obviously not unique in giving the avoided crossing and current suppression.

The evolution of the energy and eigenvectors as a function of the magnetic field
is studied. The variation of energy of the coupled states are shown in Fig. 2 as a
function of the magnetic field. The avoided crossing of the states is clearly visible
around ωc/ω = 0.71 with a level splitting energy of ∼ 1.1 meV. This value of ωc

corresponds to a magnetic field of 2.1T with m∗ = 0.065m0 where m0 is the free
electron mass. The value of m∗ taken is typical for quantum dot devices. This result
tallies well with the experimental findings of Payette et al. [26] where the energy levels
are determined from the differential conductance resonance positions and explained
theoretically with higher degree terms in the confinement potential of a single dot.

We calculate the individual branch currents Ij which are proportional to the overlap
between the superposed states of the collector dot and the 1s-like (nx = 0, ny = 0)
ground state, |G〉 of the emitter dot acting as the probe. The Hamiltonian for the ground
state is obtained from Eq. (5) with all the gnk and Vnm values set equal to zero. The
tunneling current through the jth eigenstate is given as [13,14]

Ij ∝ |
3∑

i=1

Cj
iχi|2, j = 1, 2, 3. (14)

Here χi denotes the vibrational overlap of the emitter dot ground state with the high
energy states of the collector dot system modelled as displaced harmonic oscillators.
If the states |n〉 and |m〉 belong to two different oscillators with the oscillators being
defined using the same vibrational coordinate with one oscillator being displaced with
respect to the other by an amount α, the vibrational overlap 〈n|m〉 is defined as [42]

123



J Math Chem (2013) 51:2731–2745 2739

Fig. 3 The calculated branch
currents of the coupled collector
dot system are displayed as a
function of the magnetic field
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Fig. 4 The entanglement
parameter, E plotted as a
function of the magnetic field for
the three branch states for the
interdot coupling case
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〈n|m〉 = exp

(−α2

2

) √
m!
n! α

n−mLn−m
m (α2). (15)

Here Ln−m
m (α2) is an associated Laguerre polynomial with real α. In our case of the

two-dimensional confinement potential of the quantum dots, the above expression is
easily extended [44]. The displacement parameter is given in terms of the vibronic
coupling parameters gnk (see Eq. 6). One can notice that Eq. (15) is equivalent to the
Franck–Condon factor in vibronic spectra.

The current through the respective branch states arising out of superposition are
plotted in Fig. 3 as a function of the magnetic field. From the figure we can see that the
middle branch current undergoes a strong suppression at a value ofωc/ω ∼ 0.71 which
is the anticrossing point. For both the upper and lower branch states, the respective
currents rise to their maximum values at the same magnetic field region.

Now we measure the entanglement between the electronic and vibrational degrees
of freedom as a function of the magnetic field for the three branch states. The entan-
glement E is determined using Eq. 8 and plotted in Fig. 4. The connection between
entanglement and the tunneling current becomes clear from Fig. 4. It is evident that
close to the avoided crossing point, the entanglement for all the three states undergoes
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Table 1 The magnetic field strengths (in units of ω), given in the parentheses, at which the tunneling
currents, Ij and the vibronic entanglement, E become maximum or minimum for all the superposed states

Branch state I j (a.u.) E

Lower ( j = 1) 0.02727 (0.703) 0.947 (0.715)

Middle ( j = 2) ∼ 10−7 (0.703) 0.615 (0.707)

Upper ( j = 3) 0.03567 (0.695) 0.947 (0.699)

a significant change. For the lower and upper branch states, E passes through a max-
imum at ωc/ω ∼ 0.71. It is the same point around which the current through these
states become maximum also. For the middle state, the variation of E shows a split
maximum with two more or less symmetric peaks around ωc/ω = 0.71 and hence a
local minimum at this point corresponding to the minimum in the current. So there is
a nice correspondence between the current variation and the variation in E. This type
of connection between entanglement and the measured current is already indicated in
similar systems of coupled quantum dots [33,34]. But we emphasize that the vibronic
entanglement studied here is different from those studies as it focuses specifically on
the role of the confinement potential. We have given the magnetic field strengths (in
units of ω) at which the tunneling currents and the vibronic entanglement become
maximum or minimum for all the superposed states in Table 1. The important fact
is that tunneling current measurement experiments in double or triple coupled quan-
tum dots can give useful information about the effect of this type of entanglement
on the current intensity which will be of prime importance in quantum information
processing devices.

To illustrate the robustness of the connection between current and entanglement
variations, next we vary one of the gnk parameters, namely, g11 over the range 1.51–
3.0 around its initially taken value of 2.1. Then α121 varies from 0.01 to 1.5. We
study the most interesting current variation, i.e., suppression of the current for the
middle branch state over this parametric variation. One can see from the left panel of
Fig. 5 that the current suppression around ωc/ω = 0.71 is a robust feature present
for all the different g11 values with the position of the minimum current being shifted
towards a slightly lower magnetic field for lower g11 e.g., the zero current position is
at ωc/ω = 0.68 for g11 = 1.51.

Although the current suppression position do not change much with the parameter
variation, the slope of the fall and rise of the current changes significantly with the
slope being higher for lower value of g11. For g11 = 1.51, the current falls sharply
above ωc/ω = 0.67, becomes zero at ωc/ω = 0.68 and then rises very slowly being
close to zero up to ωc/ω = 0.74. Then at ωc/ω = 0.75 it shoots up rapidly, goes
through a maximum and then falls off gradually as is the case with other values of
the parameter. But interestingly for g11 = 1.51 there is an extended region of the
magnetic field over which the current is very low and the current variation in this zone
(ωc/ω = 0.68 − 0.74) is qualitatively different from other g11 values. The variation
of g11 corresponds to different positioning of one of the collector dots in the device
with respect to the emitter dot. Hence this result can be very important in the context
of the dependence of the current on device fabrication and hence its external control.
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Fig. 5 Effect of variation of the vibronic coupling parameter g11 (keeping other parameters fixed) on the
current through the middle branch state and the corresponding entanglement

Here also we calculate the variation of entanglement between the electronic and
vibrational subsystems with the magnetic field for different values of g11 to see how
the correspondence between current and entanglement gets affected. From the right
panel of Fig. 5 we can easily see that the split maximum in the entanglement, E
around the local minimum at ωc/ω = 0.71 remains to be the distinctive feature of
the middle branch state. For higher g11, the two peaks in the E variation curve get
slightly shifted away from the ωc/ω = 0.71 point whereas for the lower range of g11
they come closer with the deep in the entanglement at ωc/ω = 0.71 getting bigger.
The case of g11 = 1.51 is again interesting here as in this case the two peaks in the
E variation curve are almost needle-like with extremely sharp rise and fall of E. The
highly important feature here is the sudden death of entanglement over the same zone
of the magnetic field (ωc/ω = 0.68 − 0.74) where the tunneling current is also very
low. The corresponding relations between the current and the entanglement variation
for upper and lower branch states also continue to be valid (not shown in figures) over
the parametric variation. Hence we conclude that the relation between the tunneling
current and vibronic entanglement is a genuine feature. In the next section we will
explore whether this connection between the current and the entanglement survives in
the dynamical evolution of the system.

Before that we give the variation of the nonclassicality parameter, δ (see Eq. 12),
corresponding to the vibrational degree of freedom of the confinement potential, as
a function of the magnetic field plotted in Fig. 6 for the three branch states of the
coupled collector dots. We see that δ passes through a maximum for all the states and
the maximum is at ωc/ω = 0.71 for the middle state and around it for the other two
states (at ωc/ω = 0.68 for the lower state and ωc/ω = 0.73 for the upper state). This
indicates the mixing of the energy levels at this magnetic field range. But unlike the
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Fig. 6 Variation of the
nonclassicality parameter, δ as a
function of the magnetic field for
the three branch states of the
coupled collector dots
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case of entanglement variation (see Fig. 4), there is no local minimum at or around this
point for the middle branch state corresponding to the tunneling current suppression.
This shows that the information of the phase relationship among the wavefunction
coefficients gets lost in this case of nonclassicality evaluation. However we point out
that Wigner function matrix formulation is successfully used by Vera et al. [58] in the
characterization of dynamical regimes and entanglement sudden death in a microcavity
quantum dot system.

4.2 Dynamical evolution

Here we have studied the dynamics of the current as well as the vibronic entanglement
evolution by solving the time-dependent Schrödinger equation for three different mag-
netic fields,ωc/ω = 0.4, 0.71 and 1.0. For each magnetic field, three initial conditions
are chosen for the numerical solution of the dynamics. In condition (1), the initially
populated state is |1, 0, 5〉, for condition (2) the initially populated state is |2, 1, 3〉 and
for condition (3) it is the |3, 2, 1〉 state. These conditions can be realized by bringing
the emitter ground state in resonance with respective superposed levels in the coupled
collector dots by adjusting the grid voltage of the device. We will discuss the results
in the following manner: the current evolutions for different initial conditions are
analyzed at a particular magnetic field followed by a similar analysis of the entangle-
ment dynamics and then these two dynamics are compared. The results are plotted in
Fig. 7.

At ωc/ω = 0.4, the currents for conditions (1) and (3) oscillate in phase whereas
for condition (2) the current variation is 180◦ out-of-phase compared to (1) and (3).
The maximum value of the current is also small in case of (1) and (3) [particularly
in (3)] compared to (2) with the minimum of the current being zero for (3). In the
corresponding entanglement dynamics, E oscillates in phase for all the three initial
conditions with the maximum value of E depending on the initial condition and every
condition showing the dynamical sudden death of entanglement periodically. Now
comparing the current and entanglement evolution we see that for conditions (1) and (3)
the current and entanglement oscillate in phase and for condition (2) they are 180◦
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Fig. 7 Dynamic evolution of current and vibronic entanglement for three different magnetic fields: a, b
ωc/ω = 0.4, c, d ωc/ω = 0.71 and e, f ωc/ω = 1.0. a, c, e describe the current evolution with each plot
showing results for three different initial conditions-1,2,3 described in the text. b, d, f show the corresponding
entanglement variations

out-of-phase [34]. Hence the connection between the current and the entanglement is
present also in the dynamical evolution with the specific relation being dependent on
the initial condition.

Next we study the dynamics at the magnetic field ωc/ω = 0.71 where the current
maximizes for the upper and lower branch states and minimizes for the middle state in
the steady state. Now in the dynamical study, the relation among the currents obtained
for the three initial conditions remains the same as in the case withωc/ω = 0.4 but here
the minimum value in the current oscillation becomes zero for all the initial conditions.
In the entanglement evolution the in phase relation is present at the sudden death
regions for all the initial conditions. In the region of maximum entanglement (E ∼ 1.0)
though, the oscillations are slightly out-of-phase for (1) and (3). For condition (2), we
get the split maximum with two peaks instead of a single peak as in (1) and (3) which
was the case also in the steady state study. Then for conditions (1) and (3), the current
and entanglement oscillate more or less in phase particularly near the minima and they
are slightly out-of-phase near the maxima. For condition (2), the current maxima are
associated with the entanglement minima and the current minima are associated with
the local minima in entanglement arising out of the split maxima.

For the case of ωc/ω = 1.0, the interrelations are a bit more complicated. For (1)
and (3), the current oscillations become gradually out-of-phase and become 180◦
out-of-phase at t ∼ 85 time unit. The current oscillation in (2) is 180◦ out-of-phase
compared to (3) and hence it is initially 180◦ out-of-phase compared to (1) but gradu-
ally the phase difference diminishes. There is a very interesting feature in the current
evolution for condition (2) at this magnetic field which is not present in any of the
other scenarios. The current oscillation for condition (2) actually shows an overall
decay or collapse of its oscillations over the time range studied. Now as we come
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to analyze the corresponding entanglement variation we find a similar collapse in
the evolution of E for condition (2) with a 180◦ out-of-phase relation with the cur-
rent. For conditions (1) and (3) also, we get a similar E evolution with the oscil-
lations for the two conditions gradually becoming out-of-phase that finally become
180◦ out-of-phase. This feature is again similar to the corresponding current vari-
ation. Hence in this case also, for initial conditions (1) and (3) the current oscil-
lates in phase with the entanglement and for initial condition (2) they are of opposite
phase.

5 Conclusion

We have studied the mixing of three single particle levels in three separate coupled
dots in an interdot mixing scheme where the profile of the energy levels as a function of
the external magnetic field shows avoided crossing. We have determined the tunneling
currents from the overlap of the emitter dot ground state and the superposed states of
the collector dots and obtained the current suppression at the anticrossing zone for a
particular delocalized molecular state of the coupled dots.

In the spirit of molecular nonadiabatic processes, the entanglement between the
electronic and vibrational degrees of freedom of the dot confinement potential is
determined for all the conditions under which the current variation is explored. Com-
parison of the results both in steady state and in time-dependent situation brings out
a remarkable resemblance between the current and vibronic entanglement variations
particularly in the manner in which these two quantities achieve their maxima and
minima, i.e., their phase relation. This relation is maintained to a significant degree of
accuracy over a large variation of the magnetic field and also for time evolution over
tens of picoseconds. Parametric variation of one of the vibronic coupling constants
illustrates the robust connection between current suppression behavior and the entan-
glement sudden-death over a narrow range of magnetic field strength. As different
values of the vibronic coupling constant indicate varying displacements depending on
the controllable magnetic field of the confinement potential, it can be very important
in producing arbitrary nonadiabatic molecular features in an artificial system which
are otherwise fixed by the real molecular parameters.
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